
ON T H E  S O R E T  E F F E C T  T H E O R Y  IN E L E C T R O L Y T E S  

B. N. Z a m s k i i  UDC 621.039.341.6 

The s ta t ionary Soret effect  in e lect rolytes  is descr ibed here in t e rms  of unbalance 
distribution functions. 

r q ' )= 

A charac te r i s t i c  feature of the Soret effect in severa l  e lec t ro lytes  is the experimental ly  discovered 
[1] sign r eve r sa l  of molecular  separat ion at cer tain mean tempera ture  and concentrat ion levels. Known 
theories  of hea t -mass  t r ans f e r  phenomena in e lec t ro lytes  [2,3, 4] based on the Debye-HUckel  model do not 
explain this reversa l .  This is so, apparently,  because the Debye-Hi icket  model does not adequately de- 
scr ibe  phenomena where i o n - s o l v e n t  interpar t ic le  interact ions must be accounted for. An at tempt will be 
made here to theore t ica l ly  evaluate the Soret effect  in e lect rolytes  with due considerat ion given to such in- 
terac t ions .  

An electrolyte  will be understood to compr ise  a sys tem of monotype dipole part icles (solvent mole-  
cules) and M types of charged part icles  (ions). In such a system, obviously, there occur  three kinds of in- 
teract ion:  i on - ion ,  i o n -  solvent, and so lven t - so lven t .  The interaction potential of k-th type and i - th type 
par t ic les  will be denoted by ~ki(q,q'), where q and q '  a re  the coordinate vectors  of these part icles;  the 
mixture components will be denoted by Lat in- le t te r  subscr ipts ,  with subscr ipt  0 denoting the solvent. 
The ion interaction will be descr ibed bythe Debye-Hffckelpotential .  The interaction between solvent mole-  
cules consis ts  of intermit tent  van der  Waals forces X00 and d ipole-d ipole  interact ions.  The latter will be 
considered in t e rms  of a potential averaged over rotational degrees  of freedom [5]. As a result ,  we have 

2g 
q)oo (q, q')=9~oo (Iq - -  q'f) 3kT (q)lq - -  q,]6 , (1) 

where ~t 0 is the dipole moment of a solvent molecule, k is the Boltzmann constant, and T(q) is the t emper -  
ature at point q. It does not mat te r  here  whether the tempera ture  T is r e fe r red  to point q or q', since ex- 
press ion (1) is, indeed, equal to zero  for any points q and q 'whose  tempera tures  T(q) and T(q ' ) a re  sub- 
stantiat ly different. In o rde r  to fur ther  avoid divergent integrals ,  we introduce a cutoff potential ~k0 at 
cer tain minimum distances Xk0 (k =0, 1, 2 . . . . .  M). For  k#0 these distances are  determined essent ia l ly  
by the solvation of ions in the solvent [6]. The solvent molecules  not bonded to ions cannot approach an ion 
within the radius of the solvation shell and, since there  are  many more  such molecules than bonded ones, 
hence the mean Xk0 distances (k r a re  of the order  of the solvation radius and this radius, in turn, is 
l a rge r  than the distances at which substantial  intermit tent  forces can appear.  Therefore ,  these forces may 
be d is regarded  and thus 

z e'g 
for ]q - -  q'] > ~k0, 

3kT (q) ]q --  q']~ 
(2) 

co for Iq - -  q'l --< ~h0, 

where z k is the valence of the k-th ion and e is the charge of an electron,  k ~O, 

Let us analyze the s ingle-par t ic le  distribution functions in the Fl(k) (q,p) sys tem [7]. They are  t ime-  
independent, since a s teady state is assumed.  In an infinite volume with different local t empera tures  the 
dependence of these functions on the coordinates can be related to their  dependence on tempera ture  alone. 
Therefore ,  we will seek F 1 (k) as functions of tempera ture  and momentum, i.e., for the time being we will 
depart  f rom the physical significance of tempera ture  as a macroscopic  quantity and will instead t rea t  it in 
m 
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Fig. i .  Experimentaldata 
obtained by K. F. Alexander 
[1] on the t r a n s f e r  heat of 
molecu la r  separat ion Q (J 
/mole)  as a function of the 
mean t empera tu re  tm(~ 
compared  with theore t ica l  
calculations according to 
formulas  (26) and (28). 
The theore t ica l  data a re  
shown by solid lines, the 
exper imenta l  data are  shown 
by dashed lines: LiC1 (1), 
L iBr  (2), LiI (3). 

t e r m s  of some potential field. We assume that F 1 (k) can be expanded into 
a power s e r i e s  in the t empera tu re  gradient.  The f i rs t  t e r m  will, obvi- 
ously, be the equi l ibr ium function. Owing to the sys tem isot ropy and by 
vir tue of the covar iance principle,  the second significant t e r m  will be of 
the second o rde r  in VT. The h ig h e r -o rd e r  t e r m s  wi l l be  d is regarded .  
The t empera tu re  gradient  is assumed uniform. Insofar  as the volume is 
infinite, the sys tem may be considered homogeneous under equi l ibr ium 
conditions. Based on all  this we write 

Flk)=(2z~m~'kT) -3 /2exp(  2m~flT P~ ) (3) 

+f(k)(T, p) ( k -  0, 1 . . . . .  M), 

where m k is the mass  of a k-th type part icle,  p is the momentum, f(k) is 
the sought s eco n d -o rd e r  function of VT. Binary distr ibution functions are  
represen ted  by a sum of cor re la t ion  functions and products  between single- 
par t ic le  functions. The overal l  sys tem is e l ec t r i ca l ly  neutral .  Local ly  
this e l ec t roneu t ra l i ty  will be maintained, we assume,  if grad T is so 

smal l  that the integrals  -J'Fi (k) dp are  l inear functions of the local t empe r -  

a ture .  This condition is st ipulated as a basis  for  d is regarding the i o n - i o n  
cor re la t ion  functions. With a s ta t ionary e lementa l  Soret  effect  all hydro-  
dynamic veloci t ies  vanish: 

S pFik, (q' p) dp=O. 

This condition is sat isfied for any q when F 1 (k) = Fl (k) (q, p2). It fol- 
lows f rom (3), then, that f(k) =f(k) (T,p2). Introducing unknown functions 
z(k) (T,p2), we have 

fik) (% #)=(2nmkkr)-3/2 Zlk) (7", p~) exp 2mhk T �9 (4) 

The respect ive  i o n - s o l v e n t  and so lven t - so lv en t  cor re la t ion  functions can also be broken down into 
equil ibr ium and unbalance components.  The unbalance components will be assumed of the same o rde r  as 
f(k))f(0 l This is, obviously, not always t rue .  For  example,  it is known not to be the case at  ve ry  low tem-  
pe ra tu res .  We will cons ider  here ,  however,  the e lec t ro ly te  t empera tu re  to be about T=300~ We inse r t  
(3) and (4) into the f i rs t  Bogolyubov equation [7]. We then equate t e rm s  of like powers in XTT dis regarding 
the highest -power  t e rm.  We inser t  potentials (1), (2) and the Debye-Hi icke l  potential into the resul t ing 
express ions .  With the condition of e lec t roneu t ra l i ty  applied to the total  sys tem,  we separa te  in the equations 
the i r  integral  and different ial  par ts .  For  Z (k) we wri te  the se r i e s :  

Z (k) (T, p2) = ~ 1I~ 2)  (T) (p2)n. (5) 
n~0 

We then set up the ma t r ix  equation 

aT( k ) 
OT _ p(k) T § Z(k) . 

Here  ~ (k)and k (k) a re  inf ini te-dimensional  vec tors  with components ~n (k) 
2 . . . .  ), 6in are  Kronecker  deltas,  and p(k) is a mat r ix  with components:  

(6) 

, -5onw(k) respectively (u =0, i, 

(k) T ( 3 (xk)  6,~ 6n-L~" 2mh&h(n+l) 6,,+L~ 
P m ( )  : 2T  k T  3 2rnJeT 2 -j- 7 "z 

(7) 

The symbol co (k) (T) r ep resen t s :  

X 

M - 

Z n~ a 
o~(k) (T) = k--v " aT 

i ~ 0  

( p2 ) 
f O m (q, q') (2zmikT)  -3/2 exp dq'dp. Z(,:) 

o 2mikT  , 

(8) 
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We have a l so  made the fol lowing des igna t ions  h e r e :  

§ 

- 2 2  2 4nnozke ~t o 
3kZ,no 

for k=O, 

for k4=0. 

(9) 

As long as  m a t r i x  P(k) (T) is commuta t i ve  with m a t r i x  p(k) (T'), so lv ing Eq. (6) b e c o m e s  m u c h e a s i e r .  
The p r o c e d u r e  by  which a solut ion is obtained will  not  be shown here ,  so  as  not to d i g r e s s  f r o m  the main  
point of this  ana ly s i s .  We only note tha t  the method r equ i red  here  has been  outl ined in [8], us ing the p rop-  
e r t i e s  of exponent ia l  o p e r a t o r s  [9] and ge ne ra l i z ed  K r o n e c k e r  de l tas  [10]. One a l so  c o n s i d e r s  he re  that  the 
va lues  of 2 m k a k / T  a r e  of  the 10-32-10  -36 o r d e r s  of magni tude,  i .e . ,  al l  but  the z e r o t h - p o w e r  t e r m s  a r e d i s -  
r e g a r d e d .  As a r e s u l t  we have 

T(n k) = T 3/2 exp  ~ (n--i~! ~ k T )  n - i  (10)  

i 

(--1y (' o TM (T) 

Where Ai(k) a r e  cons tan t s  found f r o m  the n o r m a l i z a t i o n  c r i t e r i o n  for  funct ions (3). It can .be  shown that  in 
ou r  ease  the n o r m a l i z a t i o n  c r i t e r i o n  m a y  be wr i t t en  as  ,In (k) (T m) = 0, with T m denot ing s o m e  m e a n - o v e r -  
t h e - v o l u m e  t e m p e r a t u r e .  Since VT has  a l r e a d y  been  a s s u m e d  un i fo rm,  hence  for  r e l a t i ve ly  s m a l l  t e m p e r -  
a tu r e  d rops  a c r o s s  the volume one m a y  let T m ~ (Tmi n + T m a x ) / 2 .  We can find the cons tan t s  Ai (k) f r o m  
our  n o r m a l i z a t i o n  c r i t e r i o n ,  if 

L (__l)n-tQn-i 
(n--l)! (/--i)!" : 6hi (11) 

l 

is sa t i s f i ed  for  any  a r b i t r a r y  Q. Then  (10) b e c o m e s  

T 3/2 exp a---A-~ 
~F~o kT ~ (12) 

(2mkkT) '~ 

i T 

In o r d e r  to find the funct ions co(k) (T), we f i r s t  de t e rmine  co(k) (Tm)" F o r  this  we take the m o m e n t u m  
in t eg ra l  outside the d i f fe ren t ia t ion  and s u m m a t i o n  s igns .  Then,  f r o m  (5), (8), (11), and (12) we will  obtain 

M 

o)lk' (Trr,)_k.l~ 0~ k~m [j.Ci:)hz (q ' q')dq']r=rm ~~ (13) 

By means  of the Debye potent ial  this  can be reduced  to a m a t r i x  equat ion:  

o (Tin) a = 0, (14) Ao (T~) § M ~ M 
~, z,~a,~ ~ z~a,~ 
n=l n=I 

where  co(Tm), z, a, and b a r e  ~ - d i m e n s i o n a l  v e c t o r s  with the componen t s  co(k) 0?m), Zk, 4 ~ k Z k e 2 / e n 2 k T m  , 
and 47r~0zk2ezp~w(0)(Tm)/3k2T2 m Xk0 r e s p e c t i v e l y  (k = 1, 2 . . . . .  M). Here  A is a m a t r i x  with componen t s  

zkai 

Aki Z zlal (15) 
l 

and ~'~ is the i nve r se  Debye rad ius :  

• 4~P Z " (r :T n,z , (16) 
i=1 
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with e denoting the d ie lec t r ic  permi t t iv i ty  of the e lec t ro ly te  (which, accord ing  to our p r emi se ,  depends on 
the mean t empera tu re ) .  

Equation (14) can be solved, consider ing that A is a project ion mat r ix ,  i .e. ,  that A 2 = A and that i ts  
t r ace  is equal unity. One mus t  a l so  know here  the fo rm of ma t r i x  S: 

S~, = -- ZM6ki (k, i :# M), SkM = Z k (k # M), SMi =a, ,  

with the aid of which m a t r i x  A is reduced to diagonal form.  The solution is 

4 gnoF,2oe2 
co(h) (Tin) = ~ co(o) (T,~) 

z 
i 

(k r 0) 

(17) 

Next, one can see  f rom (13) and (17) that  w(~ is a r b i t r a r y .  In o rde r  to de te rmine  the functions 
(k) (T), we will expand (12) into a power s e r i e s  in T-':-l/2-Wm-l/2 and will re ta in  only the f i r s t - o r d e r  t e r m  

(this is a ve ry  sma l l  quanti ty for  mos t  rea l  e lec t ro ly tes ) .  We can obtain a s e r i e s  expansion in the vicini ty 
of point Tm-~/2 as  well  as in the vicini ty of T-l/2. Equating both s e r i e s ,  we have 

co(h) (T) = co (k) (Tin). (18) 

It  r ema ins  to find w (0) (Tm)" Let  us say  we have produced in the s y s t e m  such a smal l  t e m p e r a t u r e  
gradient  that  (12) becom es  a l inear  function of T. Then (3), (4), (5), and (12) will  yield 

F{ k) = (2nmhkT) -a/2 {1-~ r (~') (T m) (T m -  T)} exp - 2mhkT , (19) 

i .e . ,  we have a quas iequi l ibr ium state .  The expres s ion  inside the large b racke t s  is now a uni tary  d is t r ibu-  
tion function with r e s pec t  to the coordinates  and it sa t i s f i e s  the Bogolyubov equation which r e l a t e s  i t  to b i -  
n a r y  functions [7, 11]. For  the t ime being, let us now d ig re s s  f rom the model  and cons ider  an ion gas in 
some continuous medium,  as is done in the Debye -Hi i cke l  theory.  One may  then d i s r e g a r d  all  but the ion 
distr ibution functions. The par t ia l  ion p r e s s u r e  in the s y s t e m  may  be r ep re sen ted  by  b ina ry  dis tr ibut ion 
functions and then,  with the aid of the Bogolyubov equation, this par t ia l  p r e s s u r e  may  be re la ted  to uni tary  
functions. Consider ing the condition of e lec t roneu t ra l i ty  in the sys t em,  we will then obtain f rom (17) and 

(19): 

- n~z 2 (20) 
4an~176 Z 

where Pion is the par t ia l  ion p r e s s u r e .  
o r  in an e lec t ro ly te  [121: 

We use here  the approx imate  equation of s tate  for  ions in a p lasma 

M 

Pton = Z n~kT • 24~ 
- - -  k T .  ( 2 1 )  

It follows f rom (16), (20), and (21) that  

coco) (Tin) = 
: 3 } 2 T m  • (22) 

128n~ndt~e2 Z nlz~zio 

i 

F r o m  the ve ry  beginning we have imposed  the condition of local e l ee t roneu t ra l i ty  on a s tate  of the (19) 
kind and, there fore ,  with the condition of total  e l ec t roneu t ra l i ty  we can show that  Xk0 ~ z 2 

�9 k" 
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Obviously, hk0 must  a lso be proportional  to the Debye radius: as the radius increases ,  the solvent 
molecules must  remain at a far ther  distance away from the ions. We will introduce a dimensionless con- 
stant A which depends on the proper t ies  of the solvent and 

kko= A z~. (23) 

The Soret coefficient will be found from the continuity equation, in our case div Jk  = 0. For  this pur- 
pose, the diffusion cur ren t  density Jk must  be expressed in t e rms  of distribution functions. After the re -  
su l t ingexpress ion has been reduced to a matr ix  equation of the (14) kind, the projection matr ix  of its solution 
and the fact t h a t ~ c  k = 1 will help us to obtain 

k 

M 

grad ck ~=0~ mlci (24) 

grad T M _ 
c I ~ p~Fl t) dp 

l = 0  

• -~k P"--oT-dp--c~ -~i p l - - ~ d p ,  
k=O 

where c k and ~k are  the local and the mean concentrat ion of the k-th component (in fractions of the total 
number  of part icles) and Pl is one of the momentum components.  The Sorer coefficient is by definition: 

1 grad c 1 grad c o (25) 
c(1--c) gradT c (l--c) gradT 

M 

where ~ =  ~ ~i/ff, with ~ denoting the average number of part icles  per unit volume and s obviously de- 
i=1 

pending on the location of a given point in space.  For  simplicity,  we compute the Soret coefficient at the 
points where T = T m. It can be shown that in narrow thermal  diffusion channels the values of this coefficient 
are  approximately  equal to the mean value for a channel. From the stipulated cr i ter ion for normaliz ing the 
distribution functions, we have c k =~k at all points where T = T m. In computing with express ion (24) it be-  
comes neces sa ry  to resolve the indeterminacy of 0:0, since all integrals  are  equal t o z e r o h e r e .  One should 
take advantage here  of the fact that the rat io of integrals from -r to +oo of odd functions may be replaced 
by the rat io of integrals  f rom 0 to + oo of the same functions. 

Inasmuch as, for the purpose of fur ther  analysis ,  the dielectr ic  permit t ivi ty must  be defined in spe- 
cific t e rms ,  we will cons ider  only aqueous e lec t ro lytes .  For  water  the Kirkwood formula [13] gives a value 
of e which agrees  c losely  with tes t  data. Of course ,  s t r ic t ly  speaking, the value of e for an electrolyte is 
not the same as that for water .  We will, however,  use the Kirkwood formula.  Then, consider ing that 
~NAp0/M 0 (where N A is the Avogadro number), we obtain from (3), (4), (5), (12), (17), (18), (22), (23), (24), 
and (25): 

~ M  

mo (1-- + 
s= . '='M ' l--~ { 1 - - m ~ / 2 Z  xlmT1/2 (26) 

:_,/2 ~ ml/2x~ 2r~ mo (1 - -  c) + ""o ~=1 
[=1 

M [  i/2 
Xi z2 --0; 

1--4,66 (1--c)  3/2 ~=1 ( 1 -  c)~.i= l 

where 

9k~M~ A ( 3 )  2 
(z-- 224n2p,~Po2N~ ~ ' 

77 is the refract ive  index, ~i is the fraction of i- th type ions in the total number of ions. Since A has not 
been determined,  c~ is a lso undetermined.  We will, therefore ,  proceed on the basis  of tes t  data. 
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It  is evident f rom (15) that, in principle, a mean tempera ture  Tm0 such that 

1 + rn~/2 xvnTl/2 4.66 (l--c-) 3/2 XiZ ~ --1 (27) 

T~o i=~ i=l (1-- c) ~ = M 

i = 1  

may be reached at which no molecular  separat ion occurs .  K. F. Alexander [1] has performed tes ts  on mol- 
ecu la r  separat ion in various e lect rolytes  with a 0.05 N concentration.  A reve r sa l  of the separat ion sign 
was detected in severa l  salt  solutions. The t r ans fe r  heat of molecular  separat ion was determined in [1] 
according to the formula:  

Q= --sRT ~ (1+ d ln f 
d-~n~/' (28) 

where R is the gas constant and f is the activity coefficient. A sign reve r sa l  in (28) was observed by 
Alexander in lithium salts .  Therefore ,  the constant ~ can be determined according to [1] and (27). When 
using the data for LiCl, LiBr,  and LiI, the values of the constant c~ a re  respect ively 0.13 �9 10-5/deg 2, 0.9 
�9 10-5/deg 2, and 0.2 �9 10-5/deg 2. The graphs of Q(T m) for these salts shown in Fig. 1 have been plotted 

according to Eqs. (26) and (28) with ~ =0.19.10-5/deg2. For  comparison,  test  resul ts  are  a lso shown here.  

If our results  are  applied to the other salts in [1], then the values of a will be somewhat greater .  One 
may attribute this to the fact that, s t r ic t ly  speaking, A in (23) does not depend on the propert ies  of the sol-  
vent only, as has been assumed here.  Apparently, A depends also on cer ta in  proper t ies  of the solute which 
affect the solvation. 

It can be seen from Fig. 1 that, regardless  of the various assumptions,  our resul ts  are  qualitatively 
in agreement  with experiments  [1]. As Alexander has pointed out, his results  conf i rm the Eastman hypoth- 
es is  concerning the impossibil i ty of a sign reversa l  in the Soret coefficient. Evidently, as is shown in our 
analysis ,  a sign reversa l  can occur  if the ion - so lven t in t e rac t ion  forces are  taken into account. 

M 

q~ki (q,q ') 

u0 
T ,T m 
Zk 
m k ~  
n k, n k 
E 
34 

hko 
Jk 
s 

Pc 

Xk 
Tmo 
Q 

N O T A T I O N  

is the number of different types of ions in an electrolyte;  
is the interaction potential between a k-th type particle at point q and an i-th type part icle 
at point q ' ;  
is the dipole moment of a solvent molecule; 
are  the local and mean tempera tures ,  respectively;  
is the valence of a k-th type ion; 
is the mass  of a k-th type particle; 
are  the local and mean concentrat ions,  respective ly, of a k-th type particle; 
is the dielectr ic  permitt ivity;  
is the inverse Debye radius; 
is the radius of a solvated k-th type ion; 
is the diffusion cur ren t  density of the k-th component; 
is the Soret coefficient of molecular  separation; 
is the density of solvent; 
~s the molecular  weight of solvent; 
is the average fraction of k-th type ions in total number of ions; 
~s the mean tempera ture  at which molecular  separat ion ceases ;  
m the t r ans fe r  heat of molecular  separation.  
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